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In this work, the dynamic mechanical behavior of epoxy/A-glass bead composites 
is investigated considering the influence of the volume fraction of the beads and 
their surface treatments. The main differences between the different samples are 
observed in the rubbery modulus plateau. The 'Self-Consistent Scheme" is used to 
calculate the effective shear modulus of the composite with spherical inclusions, 
i.e., a macroscopidly isotropic polymer medium containing spheres. The 3-phase 
model first introduced by Christensen and Lo accurately predicts results for the 
composite with treated glass beads (sizing agent), but fails for the other one (un- 
treated surface). For the latter composite, other related models (4-phase models) 
are also applied without satisfactory results. Then, the 3-phase model is applied in 
successive steps to account for the specific distribution of glass. 

1. IN"RODUCTIO# 
articulate reinforced materials are often used as P model systems for the interpretation of the me- 

chanical behavior of composites in which the filler is 
of more complex geometry (1-2). The general scheme 
consists in comparing experimental results with theo- 
retical predictions in order to understand the effect of 
each component, i.e. the filler, the matrix, and the in- 
terface. In the case of polymer matrix, the comparison 
is generally based on dynarmc mechanical properties. 
Actually, it is generally admitted that the harmonic re- 
sponse of a linear viscoelastic body, subjected to oscil- 
lating boundary stress, can be predicted by replacing 
modulus terms in the static linear elastic solution 
with the correspondmg complex viscoelastic modulus 
at fixed frequency. This is generally referred to as the 
elastic-viscoelastic correspondence principle (3). Thus, 
the developments of micromechanid models based 
on spherical composite inclusions are now widely 
used, and applied to predict the dynamic mechanical 
response of reinforced polymers. Models can be divid- 
ed into three types: (i) Phenomenological macroscopic 
analysis, such as Takayanagi (4); (ii) Variational mod- 

els, e.g., Hashin and Shtrikman (5): and (iii) Self- 
Consistent Scheme, e.g., Hill (6). and Budiansky (7). 
In the latter type, different formulations with more or 
less sophisticated approximation degrees have been 
proposed since Kemer's formulation (8) referred to 3- 
phase models (9). 4-phase models (10, 1 l), and (n+ 1) 
phase models ( 12). 

However, some discrepancies between theoretical 
predictions and experimental results are still often ob- 
served. Several explanations have been given. One ex- 
planation is the dependence on temperature of the 
properties of the components: the Poisson's coefficient 
(13, 14) and shear modulus (15). For a polymer such 
as epoxy, the Poisson's coefficient in the glassy state 
is around 0.32, while it increases toward 0.5 in the 
rubbery state. Since the temperature dependence of 
Gf and G',,, (resp. the storage shear modulus of filler 
and of the matrix) are not the same, the magnitude of 
the ratio G>/G,,, increases slightly with temperature 
below the main mechanical relaxation and much 
more through it and above. A second important point 
is the state of dispersion of the inclusions at the 
mesoscopic scale (1, 2, 16). Actually, if the distribu- 
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tion is not homogeneous, some regions can display 
nearly close packed spheres (i.e. aggregates), whereas 
other parts of the composite material have lower vol- 
ume fractions of spheres. Actually, it is found in the 
literature that the formation of strong aggregates in- 
creases the shear modulus the same as viscosity is in- 
creased by aggregation. 

In this paper, we analyze the dynamic mechanical 
behavior of composites with a crosslinked matrix 
(epoxy) reinforced with spherical A-glass particles with 
several filler contents or surface treatments. Ex- 
perimental dynamic mechanical experiments were 
carried out using a low frequency torsion pendulum 
operating in forced oscillations. After a brief survey of 
the micromechanics approaches, the complex shear 
modulus of the composite is calculated using the clas- 
sical 3-phase and 4-phase models. When the distribu- 
tion of the fillers appears to be nonhomogeneous, the 
classic models fail to fit the data. Then, a new method 
based on the repeated application of the 3-phase Self- 
Consistent Scheme (SCS) is proposed. This method al- 
lows us to introduce the nonuniform arrangement of 
the reinforcing phase in the material and yields to ac- 
curate prediction. 

2. EXPERIMENTAL 
2.1. m M 8  

Composite specimens based on a polyepoxy matrix 
reinforced with different volume fractions of A-glass 
beads were prepared. 

The epoxy network was synthesized from an epoxy 
prepolymer (diglycidyl ether of bisphenol-A DGEBA, 
DER 332 from Dow Chem., n = 0.02) and a p r i m q  
diamine comonomer (isophorone diamine: IPD, from 
Hiils Chem.). The reaction was made in bulk with a 
stoichiometric ratio of amino to hydrogen-epoxy equal 
to one, after degassing at 60°C during 40 minutes 
under vacuum. The A-glass beads (from Sovitec, 
A05040) were added to the DGEBA/IPD mixture and 
the reactive system was stirred during 30 min under 
vacuum. The samples were prepared as 6-mm-thick 
plates in a PTFE-coated mold. For curing, the epoxy 
reactive system was cured according to the following 
cure schedule (17): 

i: from room temperature to 413 K (2K/min) 
ii: one hour at 413 K 
iii: second heating from 413 K to 463 K (2K/min) 
iv: final stay at 463 K for six hours 
The average particle size of the A-glass spheres was 

40 pm. Different volume fractions of A-glass beads 
were introduced in the polymer, ranging from 0% 
(neat matrix) to 50%. Glass beads were used with un- 
treated surfaces or treated with (YAPS) aminosilane. 

The morphology of composites was observed in the 
cross section of the sample with an optical microscope 
(Zeiss). The observations indicate that the distribution 
of glass beads is less homogeneous when the surface 
is untreated, as illustrated in Q. 1. 

2.2. Dynamic Mechanical Spectromwpy [DMS) 

Dynamic mechanical spectroscopy was carried out 
using an inverted torsion pendulum illustrated in Q. 
2. For this apparatus, the micromechanalyzer concept 
originates from the G.E.M.P.P.M. laboratory of INSA 
de Lyon and was developed by Metravib Co. This is an 
inverted torsion pendulum device operating in forced 
oscillations at very low frequencies (from Hz to 1 
Hz). This apparatus allows the investigation of the dy- 
namic mechanical behavior of materials, such as the 
storage shear modulus, G', and the loss modulus, Gff, 
and the internal friction tan 8 = G/G' (loss tangent) as 
a function of temperature (for one or several frequen- 
cies) or frequency (under isothermal conditions) (18). 

Parallelipipedic specimens (55 X 6 X 2 mm3) were 
milled from the molded plates for these experiments. 
Measurements were performed from 100 K to 464 K 
in a frequency F = 1 Hz. 

3. EXPERIMENTAL RESULTS 

Rgure 3 shows the experimental plots of log G ,  log 
G" and log tan8 versus temperature from 100 K to 500 
K at a fixed frequency (1 Hz) for the neat matrix and 
the composites filled with various volume fractions of 
untreated glass beads (from 0% to 50%). The tan S 
spectra display the two well-known relaxations of the 
epoxy networks: (i) the 01 main peak associated with 
the glass transition region and located at 446K, (ii) the 
p relaxation peak at 240 K (secondary relaxation), 

Flg. I .  Microgrqhic  observation of 
the composite with untreated 
glass beads ( +f = 3096). 
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Rg. 2. scheme of the mechnnical S p e C t f O ~ .  (1) Pulley + 
counter weight: (2) Magnet: (3) Helmoltz’s seais; (4) Copper 
oueq (5) Sample: (6) Suspension wire: (7) Damper: (8) Mirror: 
(9) ~@&ntial photovoltai~ cek (10) Light regulated source; 
(1 1 )  Movingjaw; (12) S k z d  (13) Low- a m p l f f .  

which is considered to be associated with the motions 
of hydroxyether units (19). Several successive meas- 
urements were done in order to verifil that no physical 
aging occurred during the experiments. Some of the 
main experimental values are reported in Table 1. 
These results show that with increasing volume frac- 
tion of filler, G at lOOK increases, whereas G at 464 
K is highly enhanced. In the same time, the magni- 

Table 1. Comparison of Dynamic Mechanical Properties 
of the Neat Matrix and Composite Materials Based on 
Various Volume Fractions of Untmated Glass Beads 

(Experimental Data). 

Ta(K) tan@), G’(MPa) G’(MPa) 
(at T=l  OOK) (at T=464K) 

~ 

Matrix DGEBNIPD 446 1.1 2450 10.8 
Composite 10% 447 1 3050 14.3 
Composite 20% 448 0.95 3700 21.4 
Composite 30% 449 0.90 4450 38.9 
Composite 50% 449 0.80 6750 66.6 

tude of the mechanical relaxation decreases and the 
maximum of the peak is slightly shifted toward higher 
temperatures (- 3°C). Nevertheless, it has been checked 
by DSC measurements that the glass transition tem- 
peratures of both Samples (matrix and composite) are 
very close. That means that no major change in the 
crosslinlang degree of the epoxy matrix occurs in the 
composite, or that this change actually concerns only 
a very small volume near the interface. 

Experimental results (G’ and G )  for composites 
with 30%-aminosilane treated glass beads are also 
presented in Fig. 4 and compared with samples con- 
taining 30%-untreated beads. We can observe that 
the data are very similar except for the modulus in 
the rubbery plateau, which appears to be higher for 
the composite with untreated beads. The same trends 
are also observed for the other amount of glass beads, 
when +f > 20%. 

4. CALCULATIONS BASED ON SELF- 
CONSISTENT APPROACHES 

The estimation of effective properties for complex 
microstructures has been si@icantly improved, in 
recent years, by the use of self-consistent homoge- 
nization methods. In such an approach, the heteroge- 
neous material, loaded on its external boundaries, is 
treated as a uniform medium supporting a field of fic- 
titious volume forces. The displacement, strain, and 
stress fields at equilibrium are then derived using the 
Green tensor introduction technique (20). In the het- 
erogeneous material, each ‘phase” is regarded as an 
inhomogeneity included in a reference uniform matrix 
with mean properties. In the standard self-consistent 
approximation, the reference matrix is assumed to 
display the properties of the unknown material. In the 
case of isotropic materials, for instance, Hashin and 
Shtrikman proposed to give to the matrix the bound 
properties of the hardest (weakest) phase of the real 
material (5). 
As this type of approach is convenient for granular 

materials but not for materials with connected phases 
(21). specific analyses for the latter ones have been 
developed as, for instance, the composite sphere 
model of Hashin (22). The ”generalized self-consistent” 
scheme received a first analytical formulation by 
Christensen and Lo in the case of 2-phase materials 
(9), known as the 3-phase model. In this approach, 
the system is described considering a spherical inclu- 
sion surrounded by a matrix shell, which in turn is 
surrounded by the effective equivalent medium (Fig. 5) 
bounded in Mackensie (23). and infinite in Chris- 
tensen and Lo (9)]. Extensions to materials with more 
than two phases were later proposed from the concept 
of multi-layered inclusions, as, for example, the 4- 
phase model of Maurer (10) (introducing an inter- 
phase). Recently, the generalization to (n + 1)-phase 
model in the case of n-layered spheres has been pro- 
posed by Herve and Zaoui for isotropic elasticity (12). 
It can be noted that the solution developed by Herve 
and Zaoui, for n = 2, is similar to the 3-phase model 
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F ~ J .  3. Experimental spectra for 
the neat matriw and the compos- 
ites with diiment uolumefractions 
of untreated glass beads. 
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from Christensen and Lo (9); it will be simply called 
the 3-phase model in the following. 

The 3-phase model consists of a single composite 
sphere embedded in an infinite medium (Fig. 5) of un- 
known effective properties. The ratio of radii in Fig. 5 

is taken such that - - the volume fraction of 

the inclusion phase. In the case of a simple shear, the 
displacement is given in terms of spherical coordi- 

658 POLYMER COIwPOS/7'ES, DECEMBER 1998, Vol. 19, No. 6 



Dynamic Mechanical Properties of Spherical Inclusions 

lE+lO 

1 E+09 

G'(Pa) 

1 E+08 

I E+07 
100 150 200 250 300 350 400 450 500 

Tern perature( K)  

Fig. 4 .  Experimental spectra for 
the compositesJiued with treated 
and untreated glass beads &f = 
3096). 
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with u, = -u. (4) 
where Up U, , and Uy are unknown functions of r only, 
and these can be solved from the equilibrium equa- 
tions. 
By giving the general forms of the elasticity solution 

(24), for the three phases (Fig. 5). the equilibrium 
equation can be resolved as: 

where i is the index for the filler (= 1). matrix (=2) and 
equivalent homogeneous media (=3); v i  is the 
Poisson's coefficient of each phase, and 4, Bi, C, and 
Di are constants. The constants C,, D,, and B3 obvi- 
ously vanish ( r  = 0 and r+m) and A3 is determined 
from the boundary conditions at an infinite distance. 
After some calculations (10) in the case of a simple 
shear deformation, and by considering the passage, 
from elastic (G,) to viscoelastic (G:), (25, 26). the h a l  
equation for shear modulus of composite (G:) is given 
by the following second order equation: 

(7) 

where X,  Y, and 2 are constants and G', is the dynam- 
ic shear modulus of matrix. The simplified expres- 
sions of the constants X ,  Y, and 2 for 3-phase model 
are given in the Appendiw. Using the quadratic equa- 
tion (Eq 7). the solution for the equivalent shear mod- 
ulus of the spherical model can be determined. 
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Q. 5. Three-phase model scheme. 

5. COMPARISON BETWEEN CALCULATIONS 
AND EXPERXMENTAL RESULTS 

5.1 Application of the 3-Phase Model 

Numerical results given by the 3-phase model were 
d e d  out by developing a program computed under 
a mathematical software (Mathcad-Plus packages). 
Calculations require that the behavior of each phase 
is available. The Poisson’s coefficient, uj and Young’s 
modulus of filler, Ej are constant and equal to 0.22 
and 72 Gpa, respectively. 

The complex shear modulus of epoxy matrix has 
been determined experimentally. The Poisson’s ratio 
of the matrix is assumed to change from 0.32 to 0.5 
when the main relaxation occurs, similarly to the 
modulus following Equation 8 

where u, is the Poisson’s coefficient of the matrix, and 
j the index of the temperature from 100 K to 464 K. 

Figure 6 shows the calculated curves of G versus 
temperature for both composite samples based on 30 
vol% untreated and treated glass beads. It appears 
that, in the case of treated glass beads, the experi- 
mental shear modulus is fitted by the model on the 
whole temperature range. On the contrary, in the 
case of untreated beads, the rubbery modulus is un- 
derestimated. 

If we consider the other volume fractions, the 3- 
phase model always gives a good estimation of the 
properties of the composites filled with treated glass 
beads. On the contrary, when +f > 20% of untreated 
glass beads, the 3-phase model cannot be used for 
predicting the rubbery modulus. But, for low volume 
fractions of untreated filler (10%), a correct fit is ob- 
tained, as illustrated on Fig. 7. We can add that, in 
the case of low filler content (10%), the Kemer model 
also gives a good estimation for both samples. Never- 
theless, at larger amounts of glass beads, the calcu- 
lated values given by the Kerner model are far from 
the experimental data in the rubbery state (see as an 

the interrupted curve in m. 6b). That means, 

once again, that the Kemer equation is adapted only 
for the dilute media. 

As experimental data of untreated fillers are fit for 
low glass volume fractions and no more for higher 
values, one can assume that these differences arise 
from the morphology of the material, i.e., the spatial 
distribution of filler in the matrix. As already men- 
tioned, the distribution of untreated glass beads in 
the epoxy matrix is not homogeneous especially 
when filler content increases (Fig. I). Actually, in the 
3-phase model, the description of the material as- 
sumes that the glass bead is totally and uniformly 
embedded in the neat resin. That point is invalidated 
by the nonhomogeneous distribution of the untreat- 
ed fillers in the cross section of the specimen when 
+f > 20%. In other words, the distribution of the 
fillers in this material is too fa r  from uniformity to 
estimate correctly the effective properties with the 3- 
phase model. 

5.2 Application of the +-Phase Model 

In a second step, we decided to try other develop- 
ments from the self-consistent scheme, as for example 
the 4-phase model. We first used the 4-phase model 
from Maurer (lo), but no satisfactory fit was obtained. 
Actually, this model is devoted to a sample with an in- 
terphase. In our case, it should have been more ap- 
propriate for treated glass beads, where the chemical 
interactions between filler and matrix are of a chemi- 
cal nature. But for the treated beads, the direct appli- 
cation of the 3-phase is already adequate. 

Then, we also tried the model proposed by Mele and 
Alberola. This model seems very interesting, as it is 
based on the same micromechanical description (4- 
phase model) and claims to take into account the 
percolation concept. For volume fractions above the 
percolation threshold, the authors proposed to use a 
four-component scheme with (i) the matrix, which is 
packed in the percolated glass beads: (ii) a continuous 
medium of glass; (iii) a shell of the polymer matrix; 
and (iv) a surrounding medium of equivalent homoge- 
neous material. Different points in this approach are 
confusing but the most difficult to accept is the as- 
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Fig. 6.  Experimental data com- 
pared with calculated results 
(3-phase model applied in one 
step) for the composite 30%: un- 
treakd and treatedglass beads. 

Fig. 7 .  Experimental data com- 

model applied in one step) for the 
composite 1096: untreated glass 
beads. 
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Fig. 8. Experimental da ta  com- 
pared  wi th  calculated results 
( M e l e  and Alberola's 4-phase 
rncdel) for the composite with 50% 
untrededglass beads. 

1E+10 

1 E+09 

G(Pa) 

1 E+08 

1 E+07 

I 

- - -  50 % untreated beads 

I I I I I 1 I 

100 150 200 250 300 350 400 450 

Ternp&ature(K) 

sumption of glass continuity as far as beads are con- 
cerned. In any case, this model fails to fit the rubbery 
modulus as illustrated in Fig. 8 for a glass volume 
fraction of 50%. Nevertheless, according to the perco- 
lation theory, the existence of aggregates of a finite 
size is no doubt below the percolation threshold. But, 
the nonhomogeneous distribution of the filler is an 
important parameter that is not correctly taken into 
account in the Mele and Alberola approach since the 
modulus of an aggregate cannot be so high as the one 
of the glass. Thus, in the following section, we propose 
to use the 3-phase model in successive steps in order 
to account for the nonhomogeneous distribution of 
the filler. 

6.S Two Succemmive Stepe-Application of 
the 3-Phase Model 

More accuracy can then be expected from a better 
description of the observed phase organization. In 
other words, the composite material can be regarded 
as a matrix reinforced by spherical inclusions, being 
themselves composite systems with a volume fraction 

FYg. 9. Scheme of the spherical 
composite inclusions (highly rein- 
forced zones). 

500 

of glass spheres higher than the nominal one (Rg. 9). 
Considering that the morphology is described using 
Merent scales of heterogeneity, we decided to use the 
3-phase model in two successive applications. Such a 
successive application of the analytical micromechan- 
ical model has already been proposed in the literature 
in the case of metallic materials (29, 30) and also for 
unidirectional composites (16). 

In the first step (Rg. loa), the properties of highly 
filled zones, i.e., for which the glass beads are ag- 
glomerated (Highly Reinforced Zones) were calculated 
with three components: (i) the spherical inclusion 
with a volume fraction c $ ~  higher than the mean 
value; (ii) a shell based on the polymer matrix, (iii) a 
surrounding medium of equivalent homogeneous ma- 
terial. In the second step (Fig. lob), the three compo- 
nents considered for the calculation are: (i) the highly 
filled zone as a spherical inclusion (thus, considered 
as a new type of inclusion), having the properties cal- 
culated in the first step; (ii) a matrix shell: and (iii) 
the surrounding region of equivalent homogeneous 
media with infinite dimensions. Note that the maxi- 
mum volumetric packing fraction of spheres is de- 
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first step second step 

(4 (b) 

Rg. 10 .  'Ihreephase model of solution in the two steps of calculatro ' n  

scribed as random close packing, with the value of 
the +- = 0.68 (27, 28). 

This model requires that the effective homogeneous 
medium have the same average conditions of stress 
and strain as for the spherical model described in Rg. 
5. In this two-step analysis, the Poisson's coefficient is 
considered temperature dependent (Eq 8). Actually, 
the value of +hn can be used as a fitting parameter. 
However, it can be estimated from morphological 
studies while it corresponds to the volume fraction of 
glass beads in the highly reinforced zones. It appears 
that the +hn parameter goes through an optimum 
value to give the best fit for composites based on 30 
vo1Y0 of glass, equal to 5 1% (Fig. 1 1). The fitted curves 
for a composite based on 50% of glass using +hn as 
64% is presented in Fig. 12. TQble 2 shows the best 

calculated fittings of the dynamic mechanical proper- 
ties of composite material based on different untreat- 
ed glass bead contents. 

To sum up, these results show that the morphology 
of the composite material plays an important role for 
the dynarmc mechanical behavior of particulate com- 
posites. Of course, the two successive applications is 
somehow schematic while it represents all the agglom- 
erates as ideal spheres. Nevertheless, it already gives a 
rough description of the morphology, leadug to an ac- 
curate estimation of the whole set of experimental 
data, i.e., G ,  G', and tan+ versus temperature. More- 
over, from the mechanical analysis of the data, we can 
conclude that there are differences in the bead distri- 
bution in the two samples: surface treatment leads to 
a more homogeneous state of distribution in the mate- 
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ng. 11.  
basedon30ud96ofuntreatedglassbeads:+,= 51%. 

data compared with mlculated results (3-phnse model applied in iwo successiue steps) for the wmposite 
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Fig. 12. Eqxrimental data compared to calculated results (3-phase model applied in two successwe steps) for the composite based 
on 50 ud% of untreated glass beads: +hrz = 65%. 

rial. That point is consistent with the influence of the 
sizing on the surface energy of the beads. 

6. CONCLUSION 

In this work, the “generalized self-consistent” 3- 
phase model is used to predict the dynamic mechani- 
cal behavior of composite materials based on epoxy 
and glass beads. When the distribution of the filler is 
more or less homogeneous, the direct application of 
the 3-phase model gives an accurate estimation. On 
the contrary, with a heterogeneous distribution of 
beads, it is necessary to take into account this specific 
morphology of the composite material, by using the 
3-phase model in two successive steps. This route 
appears to give better estimates than calculations ob- 
tained from other related models based on the 4-phase 
formulations proposed in the literature. 

We can conclude that the knowledge of the spatial 
distribution of filler in the composites material is one 
of the important parameters for modeling this dynamic 
mechanical behavior. Moreover, this work actually in- 
dicates that no coupling model is universal. The best 
accuracy can then be expected from a good description 
of the observed phase organization. In order to validate 
this approach, it could be very interesting to analyze 
quantitatively the distribution of glass beads in the 
composite sample. In order to obtain 3-dimensional in- 

Table 2. Calculated Optimized Characteristics, 
for Composites Based on the Volume Fraction of 

Untreated Glass Beads. 

Ta(K) tan@), G‘(MPa) G’(MPa) 
(at T=l OOK) (at T=464K) 

Composite 10% 446 1.08 2990 14.3 

Composite 30% 448 0.989 4450 39.2 
Composite 50% 448 0.985 6610 64.2 

Composite20Yo 447 1.006 3700 20.1 

formation, the study of the morphology of both sam- 
ples (with, resp., treated and untreated beads) is at 
this moment carried out by RX tomography. 

APPENDIX 

The final solution from Herve and Zaoui for G* of 
the particulate composite is given by the results of the 
quadratic equation (Eq A-I): 

where, X ,  Y, and 2 are constants. For the 3-phase 
model, the following sirnpsed expressions are: 

X = 4RL0 (1 - 2~,) (7 - ~OU,) HI2 + 20R; (7 - 12~, + 
8%) H a  + 12Rz (1 - 2~,) X (Hi4 - 7H7.J + 20R; (1 - 
2 ~ ~ ) ’  HI3 + 16 (4 - 5~,) (1 - 2~,) H a  (A-2) 

2 = -Ria (1 - 2~,) (7 + 5~,) HI2 + 1OR; (7 - u:) Ha + 
12R2 (1 - 2~,) X (HI4 - 7H2,) + 20R3 (1 - 2 ~ ~ ) ’  HI3 - 
8 (7 - 5~,) (1 - 2~,) H43 (A-4) 

where R, = 1 and are the products of the mem- 
bers of the following matrix P, and thus q(p) are the 
numbers of line (column) of the matrix H: 

Hl2 = 5 . 1  . ‘2.2 - P2,l . ‘1.2 

H13 = . ‘3.2 - p3.1 . pl.2 

HI4 = 5 . 1  . ‘4.2 - ‘4.1 . ‘1.2 

H23 = ‘2.1 ’ ‘32 - ’3.1 * ‘2.2 

H42 = ‘4.1 ‘ p2.2 - ‘2.1 . ‘4,2 

H43 = ‘4.1 ’ p3.2 - ‘3.1 . p4,2 
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with matrix of P 
- C g(3b- 7 ~ )  
3 5( 1 - 2u,) 

(1 - 2un3b 
7( 1 - 2ur) 

0 

* - R:(2a + 147~)  
2 70( 1 - 2uf) 

7( 1 - 2v,.,Jae 
2(1 - 2 9  

with: 

a = (3) . (7  + 5uf).(7 - 10uJ - (7 - 10uf).(7 + 5vn3 

b = 4(7- 1 0 ~ ~ )  + 7 .(7 + 5.f) (3 
c = (7 - loud + 2 7 '(4 - 5 Y n 3  13 

e = 2(4 - 5uf) + ( 2 ) * ( 7  - 5uJ 

f =  (4 - 5Uf).(7 - 5un3 - - *(4 - 5u,,,)*(7 - 59) (2) 

NOMENCLATURE 

G:, G,, G", Complex, storage, and loss moduli of 
the composite. 

Gk, GI,, G", Complex, storage, and loss moduli of 
the matrix. 

Gr Shear modulus of the glass beads. 
E Young's modulus. 

urn. vf Poisson's coefficients of the matrix and 

tans Loss factor (G"/G'). 
the filler, respectively. 

Tg Glass transition temperature. 
R,, &, R3 Radii of the spherical inclusion, the 

surrounding matrix, and the equiva- 
lent homogeneous media, respectively. 

Up U,, , Uy Displacement components in the r, 8, 
and y directions. 

r, 0, y Spherical coordinates. 

- 12a 
e 

4(f- 2 7 ~ )  
15( 1 - 2~,-)@ 

- 20( 1 - 2un3a - 12a( 1 - 2un3 
7R: 7( 1 - 2uf)e 

- d e[ 105( 1 - u 3  + 12a(7 - lOu,,,) - 7e] 
7 35( 1 - 2ur) 

0 
4 1 - 2 4  
3(1 - 2 ~ ~ )  

1, 2, 3 Subscripts referring to spherical inclu- 
sion, matrix, and equivalent homoge- 
neous surrounding media, respectively. 

+j +, Volume fraction of the filler and the 
matrix, respectively. +- Maximum volume packing fraction. 

+hrz Volume fraction of the highly rein- 
forced zones. 

VER Volume element representative. 
DGEBA Diglycidyl ether of bisphenol-A. 

IPD Isophorone diamine. 
HRZ Highly reinforced zones. 
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