

EDITEURS

POLÍMEROS : DE LA POLIMERIZACIÓN A LAS PROPIEDADES

FROM POLYMERIZATION TO PROPERTIES

Jean-Yves C4WARLF

ANTHE ANT AND A CONTRACTOR

Clecard

11. NANOCOMPOSITE HYBRIDE « ORGANIQUE-INORGANIQUE »

M. SHATERZADEH, J. PEREZ, C. MAI

Groupe d'études métallurgie physique et physique des matériaux Institut national des sciences appliquées de Lyon URA CNRS 341, 20, avenue Albert-Einstein – 69621 Villeurbanne Cedex, France

EXTENDED ABSTRACT

Organic-inorganic hybrid nanocomposite

It is generally difficult to obtain a homogenous composite with nanoparticles by conventional techniques. One objective of the present work was to prepare hybrid nanocomposites by a Sol-Gel technique. The second objective was to characterise the morphology of nanoparticles during the hydrolysis and condensation processes and the mechanical properties of the hybrid nanocomposite.

EXPERIMENTAL

In-situ Organic-Inorganic hybrid nanocomposites have been successfully synthesised from pre-polymer Polyurethane-Acrylate (PUA) and 3-(*trimethylsilylpropylmetacrylate*) (TMSM) by two steps: Firstly the hydrolysis and condensation of TMSM to form fonctionalised SiO₂ Nanoparticles. Secondly the synchronous polymerisation of PUA and TMSM. The kinetics of nanoparticle formation was carried out by Small Angle Xray Scattering (SAXS) and the particle size (~5nm) was calculated from the correlation function. Both mechanical and dynamic mechanical properties were studied by compression and mechanical spectrometry techniques.

RESULTS and DISCUSSION

Kinetic of nanoparticle formation

Small angle scattering of a very condensed TMSM gel shows a correlated 0.206° peak. This peak has the ability to increase in intensity with time and

maximum, and disappear after longer times (figure 1-a). In addition a peak at $2\theta_2 \cong 6.5^{\circ}$ is observed, also found by SAXS. It showed a slight increase with time, i.e. with the progress of the condensation reaction, toward shorter distances (figure 1-b). Two correlation peaks can also be observed on the wide angle X-Ray diffraction. The first one has already been discused and is located at $2\theta_2 \cong 6.5^{\circ}$. The second peak is more intense, is located at $2\theta_3 \cong 21^{\circ}$ (figure 3), is due to the characteristic of the amorphous material, presenting order at a shorter distance. The classical amorphous peak observed here may correspond to interatomic distances which can be found in TMSM molecules (Si-Si, Si-O, Si-C,....). We can not distinguish them because this amorphous peak depends simultaneously on several different distances. It can be designated as intermolecular $d\cong 4 A^{\circ}$. The another peaks really characterise these material. The first one at $2\theta \cong 0.6^{\circ}$ gives a correlation distance of $d_1 \cong 150 A^{\circ}$ and the second, at $2\theta \cong 6.5^{\circ}$, gives $d_2 \cong 14 A^{\circ}$. We can interpret these as follows:

The largest distance is $d_1 \cong 150$ A° and corresponds to the distance between the condensed clusters of silice. Indeed the hydrolysis and the condensation of the three Si-OH groups, begins with the formation of the Si-O-Si clusters (figure 4). The distance of $d_2 \cong 14$ A° can be the size between two atoms of Si belonging to the two different chains with hydrogen links. The distance of "d" in figure 4, corresponds to the first approximation of the distance found by SAXS. Indeed the interatomic distance gives a value of $d_{théorique} \approx 14,7$ A°. This hypothesis for the origin of the peak $2\theta_2$ is well confirmed that the advance of the condensation (with time) give the evolution of d_2 to the smallest value (figure 1-b). This is coherent with a densification of the nodules sweeping a reconciliation of the Si. This peak can be described as intermolecular. The disappearance of the peak $2\theta_1 \cong 0.6^\circ$ can be explain if we consider the Sol-Gel reaction of the TMSM as follows (Nucleation; Growing; Connexity):

f

R

The Si-O-Si clusters begin to form (Nucleation): The peak of $2\theta_1$ and $2\theta_2$ appear. The peak of $2\theta_1$ reaches a maximum intensity, as the clusters growing. At the maximum, the particle size observed is about 5nm. After 10 days, the peak of $2\theta_1$ disappéars; there is percolation, to form a *physics gel* (figure 2-d).

Mechanical properties

The results of the compression tests are shown in figure 5, from these curves we can conclude:

We have a good comparison between the mechanical behaviour of the hybrid nanocomposites and the polymer (PUA). The PUA shows a classic compression curve indicants important plastic deformation. The compression curves of the hybrid nanocomposites, with different concentrations of silice nanoparticles, show an important increase in the elastic modulus (Young's Modulus) and also a decreas plasticity. However a plastic zone is always apparent before fracture, in all of the hybrid materials, regardless concentration of the silice nanoparticles.

Finally, we have the dynamic mechanical spectra shown in figure 6. We can see the important difference between the polymer and the hybrid nanocomposites. We have found a model for this structure, shown in figure 7.

NTRODUCTION

L'intérêt du procédé Sol-Gel (synthèse à basse température) est de permettre de préparer in-situ des composites hybrides "Organique-Inorganique" que l'on ne peut pas obtenir par des procédés classiques[1-3]. De plus, par les mécanismes d'hydrolyse et de condensation on peut obtenir des nanoparticules réparties de façon assez homogène dans la matrice[4].

L'objectif de ce travail est double:

the faith

- d'une part, synthétiser des nanocomposites hybrides dont les nanoparticules sont nées chimiquement à la matrice par l'intermédiaire des groupes fonctionnels.

- d'autre part, caractériser la microstructure des nanocomposites et étudier leur comportement mécanique.

SYNTHESE

L'hydrolyse et la condensation du TMSM permet la formation de nanoparticules fonctionnaliseés:

* Hydrolyse	
OR R'-Sì-OR OR	OH + 3H₂O ⇔ R'-Ši-CH + 3ROH OH
** <u>Condensa</u>	ion
QR	OH OR OH
R' - Si - OR + :	$HO - Si - R' \rightarrow R' - Si - O - Si - R' + ROH$
ÓR	OH OR OH

OH	OH	OH	OH	H±O
R'-Si-OH +	HO - Si - R' →	R'-Si-O	- Si - R' +	
OH	OH	OH	OH	

Le contrôle de la cinétique permet d'obtenir des nanoparticules de taille donnée. Dans cette étude la taille moyenne des nanoparticules est de 5nm.

La solution ainsi obtenue est mélangée avec une prépolymère PUA. Ensuite, on réalise une polymérisation radicalaire.

Le matériau obtenue est légèrement coloré mais reste transparent.

RESULTATS ET DISCUSSION

Cinétique du formation de nanoparticules

La cinétique de formation de nanoparticules a été suivi par SAXS à la température ambiante pour ralentir les réactions d'hydrolyse et de condensation (dans la pratique nous obtenons rapidement les nanocomposites à la température de 50°C). Les figures (1a-1b) montrent l'évolution des courbes de diffusion aux petits angles. Avant l'introduction de l'eau à (pH=2.5), la courbe de diffusion du TMSM me montre aucune diffusion ni aux très petits angles($2\theta < 1^\circ$), ni aux angles moyens($2\theta \approx 8^\circ$).

Les courbes de diffusion évoluent avec le temps après l'introduction de l'eau. Au bout de deux jours on peut observer nettement des maxima, l'un vers $2\theta \approx 0.6^{\circ}$, l'autre vers $2\theta \approx 6.5^{\circ}$.

L'intensité des maxima augmente avec le temps. Par contre, seule la position du premièr maximum $(2\theta \approx 0.6^\circ)$ se déplace régulièrement vérs les petits angles Parallèlement la viscosité de la solution augmente.

Lors de la formation du gel, on observe la disparition de maximum $(2\theta \approx 0.6^{-1})$ Celui à $(2\theta \approx 6.5^{\circ})$ reste intense et se déplace légèrement vers les grands angles.

Figure 2: a) Solution homogèneb) Nucléation des particulesc) Formation des amasd) Gel physique

On peut interpréter le mécanisme de formation de nanoparticules puis du gel de la manière suivant (Fig. 2):

- A <u>t=0</u>, la solution est homogène; on n'a donc pas de diffusion (Fig. 2-a).

276

100 ACL DA

- A $t\neq 0$, début de la nucléation des particules de SiO₂ par condensation(Fig.2-b). Lorsque le nombre de ces particules devient important, il y a des interférences interparticules, d'où l'apparition d'un maximum sur la courbe de diffusion(Fig 2-b). Puis il y a grossissement des particules SiO₂ en amas de SiO₂. Lorsque la taille des amas et leur nombre augment, il y a percolation, et formation du gel (Fig. 2-c).

A Barriel Lines

Le maximum à $2\theta \approx 6.5^{\circ}$ ne correspond pas à la "bosse" amorphe observée dans les solides non cristallin. En effet, la diffraction X sur le gel montre une "bosse" vers très grand angle ($2\theta \approx 21^{\circ}$) qu'on interprète généralement comme l'ordre à courte distance (Fig 3).

Le maximum à $2\theta \approx 6.5^{\circ}$, pourrait être interprété comme l'ordre à courte distance entre les silicium des "nodules" formé du SiO₂ et du Silicium de la moléculaire du TMSM(Fig. 4).

<u>Figure 3</u>: Spectre Diffraction X : a) PUA seul(100%) b) Nanocomposite PUA(75%)+TMSM(h/c)(25%) c) Nanocomposite PUA(25%)+TMSM(h/c)(75%)

Figure 4: La distance entre les atomes Silice

Propriétés Mécaniques

- Propriétés mécaniques statiques:

La figure 5 montre un exemple de courbes σ - ϵ en compression du PUA et des ranocomposites dont la proportion (molaire) PUA-TMSM varie.

On observe une importante augmentation des propriétés mécaniques des manocomposites en comparaison avec celles de la matrice seule(Tab. I).

- Propriété mécanique dynamique

La figure 6 montre les courbes de $tg\phi$ (amortissement) et G'(module dynamique) obtenues par spectrométrie mécanique à la fréquence 1Hz.

En ce qui concerne le module de cisaillement dynamique G' au dela de la relaxation principale α , on constate une différence de 3 ordre de grandeur entre le nanocomposite et le polymère. La température de transition vitreuse (T_{α} =203°C) du nanocomposite est à 25°C supérieure à celle de la matrice PUA.

Figure 5:Les courbes en charge-décharge de compression uniaxial

	Matériau	Module d'Young E(MPa)	Augmentation de module(E)	Déformation plastique
1	PUA seul.	667	-	importante
2	PUA(75%)+ TMSM(h/c)(25%).	1029	+54%	encore notable
3	PUA(25%) +TMSM(h/c)(75%)	1100	+64%	encore notable

Tableau I: Comparaison des caractéristiques mécaniques des nanocomposites avec PUA

<u>Figure 6</u>: Spectrométrie mécanique(Influence du TMSM sur PUA) 1) Polyurethaneacrylate(100%) 2) PUA(25%)+TMSM

278

Modèle de Microstructure

Les nanoparticules obtenues par hydrolyse et condensation du TMSM présentent en bout de chaîne des groupes fonctionnelle (C=CH₂). Les doubles liaisons =CH₂ des nanoparticules peuvent être par l'intermédiaire du catalyseur benzoyle sous U.V. et peuvent lier avec les groupes métacrylate du PUA. Par conséquent, les résultats des études précédentes permettent de proposer un modèle du microstructure du nanocomposite hybride (Fig. 7). La microstructure est formée de nanoparticules de SiO₂ liées à la matrice PUA par la polymérisation radicalaire des liaisons CH₂= dans le PUA et du TMSM. La taille des nanoparticules est de l'ordre de 5nm. La distance moyenne entre particules est de 12mm.

CONCLUSION

1) Cette étude nous a permis de montrer que la synthèse des nanocomposites hybrides à basse température est possible; le matériau obtenu a été caractérisé et un modèle de microstructure est proposé.

2) Les études des comportements mécaniques des nanocomposites hybrides montrent que les propriétés mécaniques des nanocomposites augmentent avec la teneur en particules de silice dans ces hybrides. Cette variation de comportement mécanique résulte d'une réticulation des macromolécules par ces particules.

REFERENCES

- B.M. NOVAK, M. W. ELLSWORTH, T. WALLOW, & C. DAVIES, "Simultaneus Interpenetrating Network of Inorganic Glass and Organic Polymers. New Routes into Non-Shrinking Sol-Gel Derived Composites", *Polymer Preprints*, Vol. 31, N°2, p. 698-699, (1990)
- 2 B.M. NOVAK, "Hybrid Nanocomposite Materials-Between Inorganic Glasses and Organic Polymers", *Advanced Materials*, Vol. 5, N°.6, p.422-433, (1993)

Y. CHUJO & T. SAEGUSA," Organic Polymer Hybrids with Silica Gel Formed by Means of the Sol-Gel Method", *Advances in Polymer Science*, Vol. 100, p.11-29, (1992)

3

4 C.J.T. LANDRY, B. K. COLTRAIN, J.A. WESSON, & N. ZAMBULYADIS, "In situ Polymerisation of Tetraethoxysilane in Poly(Methyl Methacrylate) : Morphology and Dynamic Mechanical Properties", *Polymer*, Vol. 33, N°7, p.1488-1495,(1992)

280