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ABSTRACT

The Self-Consistent Scheme was used to predict the dynamic mechanical properties otgF 
( \\composites. Three types of the composites (polyepoxy matrix) were studied with, (D non heatgl

frlleis, (ii) aminosilane-treated fillers, and (iii) elastomer coated fillers. In the case of tie t'

composites based on untreated and aminosilane-treated fillers, the (n+l)phase model developed
by Herve andZaoui was chosen. The problem for 3 phases was solved by modifying it: (i) with
considering the spatial distribution of glass particles and, (ii) with repeating the self-consistent

model, In the case of the composites with elastomeric interlyer, the 4 phase model was used by

uking into account the changing of the interlyer's properties. Conditions of linear elasticity were

assumed and the Poisson's coefficient was considered to vary from 0.32 in the glassy state to 0.5

in the rubbery state. The theoretical results well fit the experimental data.

l.INTRODUCTION

particulate composites are generally used as model systems for studying the mechanical

rbehaviour of composites in which the filler has a more complex geometry (l'{ielsen 1970, 1994).

The comparison of the differences between theoretical models and experimental results for

dynamic mechanical properties of particulate reinforced polymers is one of the limitations for

pnderstanding of the dffect of the role of each component, i.e. the frller, the matrix, and the

inJerface or interphase. Several micro-mechanical models were proposed to predict the dynamic

riechanical properties of these composite materials: Geometric, i.e. Kerner (1956), Self-

Consistent, i.e. Hill (1965), or variational models, i.e. Hashin and Shtrikman (1963).
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describing the material from the micro tornu"io-r.ul..
In such an approach the system is considered
as a spherical inclusion surrourded by a
matrix shell which in turn is su.roundei bv
the effective equivalent medium @ig. 1). In
this paper, we attempt to compare theoretical
and experimental dynamic mechanical
properties by carrying out measurements on a
cross linked polymer (epoxy) reinforced with
three types of spherical A-glass particles
using a low frequency torsion pendulum
operating in forced oscillatiors.

Fig. 1. Three phase model

2. EXPERIMENTAL PROCEDURE

composites specimens based on a polyepoxy matrix filled with 10%, z0%o, 30yo, etd
volume fraction of unheated, aminosilane(yAPS)-treated, and elastomer coated A-slass I

In order to study the elastic be-hryiour of two phases matrix-inclusion composites, chrand Lo (1986), and Herv6 and Zaoui (1993) proposed a Generalised serf-consistent

were prepared. The average particle sizes of the A-glass spheres were 40 pm (in numl
epoxy network was synthetized from an epoxy prepolymer (DGEBA) and a primary
comonomer (IPD), considering a stoichiometric ratio (amino-hydrogen to epoxy) .q*ito I
interlyer that is coated the fillers, was a elastomer (DGEBA-CTBN-IPD).

'm 
,"rp"3ff,ur"(R 4oo

(loss tangent) as a function of temperature. parallelipiedic specimens (55*6*2 mm$
machined from the casted plates. Measurements were perfonned from 100K to a6ak

Dynamic mechanical spectrometry was carried out using an inverted torsion pendulnm
apparatus allowed the investigation of the dynamic mechanical behaviour of materials, s
the storage shear modulus, G', and the loss modurus, G,,, and the intemal ffiction tan

frequency of lHz.

3. RESULTS, MODELISATION AND DISCUSSION

3.1. Dynamics mechanical spectra of neat epoxy and non treated filler's composites.
Fig. 2 displays the isochronal experimentai plots of G'by increasing the temperature from
to 464K for the neat matrix and the composites based on various volume ftactions of elass
(l\Yo,20Yo, 30%, and 50%).

The Table l, reports values obtained for neat
matrix and the composite materials. These
results show that with increasing the volume
fraction of filler, the magnitude of the
mechanical relaxation (the tan\ value at the e
maximum) decreases and the temperahre I
position of the cr peak is slightly shifted
towards higher temperatures. The storage
modulus, G', increases, where as the shear
modulus in the rubbery state (G' at T=464K)
is highiy enhanced with increasing the filler
content.
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Fig. 2. Experimental results of G'
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Iable 1: Dynamic mechaLnical properties of the neat matrix and composites materials based on
*,*'***MMs beads (Exprii*"r ar*l

32' It4odelling the DMS lJehaviour. Herv6 and Zaoui (1993) generalized and determined theeffective shear and bulk modulus of the composites. This Jnalysis consists of the single
composite sphere embedderl in an infinite medium (Fig. i) of unknown effective properties. Tiis
modeJl requires that the effective homogeneous medium has the same average conditions of stress
'and strain as for the spherical model described in Fig. 1. After some calculations (Hervd 1993) in
the case of a simple sheal deformation, and by considering the conespondence between the
elasticr (G.) and the visco,elastic (Gl) fuustrln 1970), the final equation for dynamic shear

modulus of composite (ci1 is given by the following second order equation:

c : .  c l
" '4 ' . " tq ' '+c=o (1 )

ivhere A, B, and C are constants and G', is the dynamic shear moduli of the matrix (Appendix).

'@rc mechamcal behavilours :For a low volume fraction of filler $rg0%), the fillers are
I d:ispersed in the matrix and the calculated results are well fitted by the experimental data.
f.or: the composites with a higher volume fraction of grass beads ($p20%), this model can not
itred conectly the experimental data. Indeed, as shown in the Fig. 3, the experimental shear
rlrrs, in the rubbery statr:, for a composite based on 30% vol. of glass beads, is not well fitted

by the model. The main reason of the difference between experimental and calculated results is'ilue to the real morphology of the composite. The micrography of composite shows, there is an
.Fgglomeration of particles. lio two parameters need to be considered: (i) the poisson's coefficient'bf the rmatrix which is not qtnstant from the glassy to the rubbery state and; (ii) the morphology
of the rnaterial, i.e. the spatitrl distribution of filler.

1 E+09

1 E+08

1 E+07

100

TemlDrature{K)

Fig. 3. Storage shear modulus of a
composite based on 30Yo vol. of glass.

Fig. 4. Scheme of the particles'
agglomeratin and spherical
composite inclusions (hrz)
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Fig.5. 
'Ihree phase model of solution in the two step calculation

In this two step anal'ysis, the Poisson's coefficient is considered as temperatule dependent' 
-l

value of $6o is an itpo.t*ip*u-eter and it can,be s:"ti bI,T::Y':t:Tl,:tH::fS

gi^r, U""Oti" tfrese tiigniy rtinfo'ctd comlollt^e' 
'fhe final calculated behaviour for a

[as.d on 30% vol' of'glass with $h,' equal to 51% is given in Fig' 6'

1 F 1 0

1E:109

1F{8
o &Perin€ntal

-- 2 step nndel

Fie. 6. Calculated results(2-steps'

0h.:51%) given bY modified H

model for a comPosite based on

vol. ofuntreated glass beads'
1 Et07

300

composites are better,

360 390 420

Temperature(K)

This hypothesis are confirmed for the composite with a higher volume fraction

vol.). Table 2 shows tf" Uu calcuiated fittings of the dynamic mechanical

.o*porit. material based on different glass bead contents'

Table 2: Calculzrted optimized characteristics, for composites based on the various volume""

fraction of untreated glu'i b"ud' ,, ,, .-*,,,"**r**=*;

Fig.TshowsthecirlculatedresultsusingKemer'sandHerv6-Zaoui'smodelsincompanson
experimentaldata.onenoticethatintherubberystate,theKemer'smodelhasaverybadfil

ffiffifriffitil .nro;rtt.r. In the second tvpe of the composites' microgra;

observation showsi, tt...I not t6e high agglom.*iion of the fillers and the homogeneity of

of glass.
properties
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Dynamic mechanical properties of the spherical inclusion composites

this case the calculated vrllume fraction of highly reinforced zone, $6o, equal to 37% instead
5l% in the untreated filler composite (30%). In the other hand we can consider that the glass
icles are better dispersecL. So for predicting the dynamic behaviour of these composites, we
use the same model with only one step of calculation (Fig. 8),

1E+10

1E 09

i lE+oB

Tem porature(19

Fig. 7. Comparison of the calculated
results (2 step, v varii$le, $6.:51%) by
Herv6 and Kerner's mc'del

1 8 t 1 0 ,  : . - - -
u;o"^-!ooo(<t'-_^ ' - 

--l

exoerinental -ttilodel

Tem psraturs(l!
Fig. 8. Comparison of the calculated
results (1 step, v variable, ) and
experimental results for the composite
based on 30% vol. treated slass beads.

100

rated glass bead composites. In the case of the composites with interlyer (e/r=1.5%,

of the interphasrz and r: the radiate of the fille), the distribution of glass particles

by microscopy), is homogenate. The same model with 4 phases (1. filler, 2. interlyer,

4. equivalent hor,nogeneous media), in one step is used (Fig. 9), but the calculated

in not fitted by the experimental once (Fig. 10 (a)). The reason of this difference should be

change of the interlyer's properties.
the Zo of the elast;omeric material in

ison with the matrix (EpoxY) is very
(To=240K), but h the comPosite's

(interphase), the molecular mobility

and it has not the sane behaviour. So we

supposed that the stonlge modulus (G') of
(interphase) is between the G' of

elastomer material and G' of the matrix

bxy). So with this hypothesis, the calculated Fig. 9. Four phases model of solution for
the composite with interlyershow a best fitting with the experimental

{Fie. 10 (b)).

1,008+1 0

1,00E+09

1,00E+08

1,00E+07

o-

10. The comflgflsg6tfft[he catcurated (4 phases model) *d 
"Ii!Bi{ii'"Ii$l 

results for
posite 30% with non (a) non modified interphase and, (b) modified interphase properties.
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4. CONCLUSION

In this work we have shown that in the case of low volume fraction of the filler, the
consistent models developed by Christensen-Lo and Herv6- Zaoui, predict a better fitting
dynarnic behaviour of the particulate composite than Kemer's one. But in the higher
fraction of glass beads (0-20%), these models can not well predict the dynamic properties in
glass transition region especially in the rubbery state. So the model of Herv6 and Zaoui,
modified by including the real morphology of the composite and, the variation of the Poi
ratio. In the case of the composites with interlyer (interphase), a 4 phases model in one
describe conectly the properties of the composite, but it must be considered that the properties
the interphase i.e. G', change between the matrix and interlyer's values.
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APPENDIX

The final solution from Herve and Zaoui for G* of the particulate composite is given by the results of the
equation (A-1):

G : "  G :
^( ;? r *Br6+)+c=0 (

where,A,B, 
9c 

arcconstants. por tnte phase moO#, the fbllowing simplified expressions ate:

A= 4{: (-2v^)(7 -10v')H12 +20R1(7 -l2v^+avz^)H+z+12R; ( l-2v*)

x(Hr+ -7H4)+20R3r1t -Zv^12H13 +16(4-5vm)( l -2v*)H43 (
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B = 3Rl0 f i  -  2v  ̂  )  ( l |v ^ -  7 ) t l r -+ 60R] (v '  -  3)v*H 42'-  24R52 (1 -  2v  ̂  )

x(Hra -  lHz)- 40R1 Q - 2 'v ^)2 H 13 - 8( I  -  5v'  )(  1 -  2v,n )H43

c =  -R l0  Q-2v^) (7+ 5v* ) I I12  +r0R]  0  -  r2^ )H+z + l2Ft l , i '  -2u^  )

x (Hra  -  lH1; . )+20R; (1  -2 r^ )2  H13 -8 (7-5vr ) (1 -2v , r )H43

which, R2=l and 1trs are the products of the members of the following matrice P, thus q(0) are the number of line

{column) of the mahice P:

H r r  =  P r  t . P t . t  -  P r  r  . P r  r

H r r  =  P r  1  P r  r  -  P r  r  . P r  r

H ra  =  P t , t  'Pq ,z  -  P+ , t  'P t , z

Hzz = Pz J '  Pt ,z  -  Pt  ) '  Pz,z

H  qz  =  P+  ) '  Pz , z  -  Pz  J '  Pq ,z

H+3 = Pa, t  Pr ,z  -  Pt l 'Pq,z

with matrix of P:

SrF4 
-20(1:2_vm)o

7( r -2vy)  7Ri
--RJ(2a+147cr) g

7 0 ( 1 - 2 v i )  7

?(l  -2v,)crRi 
0

2( l -2v1)

rA  - i )

(A4)

a$ -27s.)

15 (1 -2v i )R f
-12cr(1 -2v '  )

7( l  -  2ve )Rf

R?[105( l  -  vn l )  + t2a(7 - l0v*)  -7e]

35 (1  -2v1 )

e (1  -  2v . )
3(1 -  2v1 )

0

t G " l

"  
=  |  +  l .  1 r  *  s n  s  ) . (  7  -  1 O v m  )  -  ( i  -  l O v s  ) ' ( ' /  +  5 v .  )

t G  I
\  m /

n? (:u - zc)
5(1 -  2vs)

-12a

Ri

P=-l-
5 ( 1 - v * ) Kio

2

- lrt  - zu- lonl
6 '

, .  * \
l G .  l

b  =  a 0  -  l o v g )  + l  - +  l ' ( 7  + 5 v s  )
l 'G* ' /
/  * \
I G " l

s = ( 7 - 5 v m )  + 2 1  - +  l . ( 4 - 5 v m )
t G  I\  m . /
/ '  * \
t G ^ l

d  = ( 7  +  5 v n , )  + 4 1  - +  l , { r  -  t o v m  t
l G  I\ .  m , /

/  + \
t G ^  I

e  = 2 ( 4  - s v 1 )  + l  - f  l ' t r  -  s v i )
t G  I
\  m , /

f=(a-5v1)  (7-5v* '  
IF l  

(4  5v. )
\  m /

l G " l"=1fi1:'

' .:';.,
,,iit.,
:?l

( 7 - 5 v 1 )
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