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ABSTRACT

The Self-Consistent Scheme was used to predict the dynamic mechanical properties of,
composites. Three types of the composites (polyepoxy matrix) were studied with, (i) non treated < N
fillers, (ii) aminosilane-treated fillers, and (iii) elastomer coated fillers. In the case of the
~ composites based on untreated and aminosilane-treated fillers, the (n+1)phase model developed
by Hervé and Zaoui was chosen. The problem for 3 phases was solved by modifying it: (i) with
. considering the spatial distribution of glass particles and, (ii) with repeating the self-consistent
& model. In the case of the composites with elastomeric interlyer, the 4 phase model was used by
taking into account the changing of the interlyer's properties. Conditions of linear elasticity were
. assumed and the Poisson's coefficient was considered to vary from 0.32 in the glassy state to 0.5
in the rubbery state. The theoretical results well fit the experimental data.

1. INTRODUCTION

B Particulate composites are generally used as model systems for studying the mechanical
behaviour of composites in which the filler has a more complex geometry (Nielsen 1970, 1994).
The comparison of the differences between theoretical models and experimental results for

L dynamic mechanical properties of particulate reinforced polymers is one of the limitations for
understanding of the gffect of the role of each component, i.e. the filler, the matrix, and the
interface or interphase. Several micro-mechanical models were proposed to predict the dynamic
mechanical properties of these composite materials: Geometric, i.e. Kerner (1956), Self-

" Consistent, i.e. Hill (1965), or variational models, i.e. Hashin and Shtrikman (1963).
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In order to study the elastic behaviour of two phases matrix-inclusion composites, Christ
and Lo (1986), and Hervé and Zaoui (1993) proposed a Generalised Self-Consistent
describing the material from the micro to macro scale.
In such an approach the system is considered

as a spherical inclusion surrounded by a i :
matrix shell which in turn is surrounded by / ingluston
the effective equivalent medium (Fig. 1). In 7 : L 2nd, phase. :
this paper, we attempt to compare theoretical ‘
and experimental dynamic mechanical
properties by carrying out measurements on a
cross linked polymer (epoxy) reinforced with
three types of spherical A-glass particles
using a low frequency torsion pendulum
operating in forced oscillations.

1st. phase: Sphe ‘

‘3th. phase: Equi
homogeneous mea

Fig. 1. Three phase model

2. EXPERIMENTAL PROCEDURE

Composites specimens based on a polyepoxy matrix filled with 10%, 20%, 30%, and
volume fraction of untreated, aminosilane(yAPS)-treated, and elastomer coated A-glass b
were prepared. The average particle sizes of the A-glass spheres were 40 um (in number).
epoxy network was synthetized from an epoxy prepolymer (DGEBA) and a primary dia
comonomer (IPD), considering a stoichiometric ratio (amino-hydrogen to epoxy) equal to 1.
interlyer that is coated the fillers, was a elastomer (DGEBA-CTBN-IPD). ' '
Dynamic mechanical spectrometry was carried out using an inverted torsion pendulum.
apparatus allowed the investigation of the dynamic mechanical behaviour of materials, such
the storage shear modulus, G’ and the loss modulus, G", and the internal friction tan §=G
(loss tangent) as a function of temperature. Parallelipiedic specimens (55*6*2 mm’)
machined from the casted plates. Measurements were performed from 100K to 464K
frequency of 1Hz.

3. RESULTS, MODELISATION AND DISCUSSION

3.1. Dynamics mechanical spectra of neat epoxy and non treated filler's composites. :
Fig. 2 displays the isochronal experimental plots of G’ by increasing the temperature from 1§
to 464K for the neat matrix and the composites based on various volume fractions of glass'b
(10%, 20%, 30%, and 50%).

The Table 1, reports values obtained for neat
matrix and the composite materials. These

results show that with increasing the volume

fraction of filler, the magnitude of the

mechanical relaxation (the tand value at the o neat matrix
maximum) decreases and the temperature 3 — CampnstE10%
position of the o peak is slightly shifted ripm—
towards higher temperatures. The storage o composite 50%
modulus, G’ increases, where as the shear 1E+07 | ;
modulus in the rubbery state (G’ at T=464K) 100 200
is highly enhanced with increasing the filler

content.

300
Temperature(K)

Fig. 2. Experimental results of G' mo
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Table 1: Dynamic mechanical properties of the neat matrix and composites materials based on
various volume fractions of untreated glass beads (Experimental data)

tar

10.8 28.5
14.3 334
214 41.9
38.9 JL.7
66.6 62.3

3.2. Modelling the DMS Behaviour. Hervé and Zaoui (1993) generalized and determined the
effective shear and bulk modulus of the composites. This analysis consists of the single
composite sphere embedded in an infinite medium (Fig. 1) of unknown effective properties. This
model requires that the effective homogeneous medium has the same average conditions of stress
and strain as for the spherical model described in Fig. 1. After some calculations (Hervé 1993) in
the case of a simple shear deformation, and by considering the correspondence between the

elastic (G;) and the viscoelastic (GZ) (Hashin 1970), the final equation for dynamic shear

- modulus of composite ( G:) is given by the following second order equation:
G., _ G
A1) +B(—¢ )+ =1 6]
“ G G

m m
here A, B, and C are constants and G‘m is the dynamic shear moduli of the matrix (Appendix).

3.3, Untreated glass bead's composites: Comparison between experimental and theoretical
‘dynamic mechanical behaviours : For a low volume fraction of filler (0<20%), the fillers are
well dispersed in the matrix and the calculated results are well fitted by the experimental data.

ut for the composites with a higher volume fraction of glass beads (¢£>20%), this model can not

escribed correctly the experimental data. Indeed, as shown in the Fig. 3, the experimental shear
modulus, in the rubbery state, for a composite based on 30% vol. of glass beads, is not well fitted
by the model. The main reason of the difference between experimental and calculated results is
due to the real morphology of the composite. The micrography of composite shows, there is an

;glomeration of particles. So two parameters need to be considered: (i) the Poisson's coefficient
of the matrix which is not constant from the glassy to the rubbery state and; (ii) the morphology
of the material, i.e. the spatial distribution of filler.

1E+10
-

1E+09 4

1 J === Mode|
1E+08 - S

1E+07

100 200 300 400 500

Temperature(K)

Fig. 4. Scheme of the particles'
agglomeratin  and  spherical
composite inclusions (hrz)

Fig. 3. Storage shear modulus of a
composite based on 30% vol. of glass.
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To take into account of the morphology, the volume element representative (VER) is consid
as in Fig. 4. Thus, highly reinforced zones(hrz) are defined as the zone in the composite with
higher volume fraction of glass beads, Oy, , than the average one, ¢ . The problem was ‘
solved in two steps; (i) in the first step, the dynamic mechanical properties of the hi;
reinforced zone) are calculated and, (ii) in the second step the properties of the equiv:
homogeneous media or whole composite are calculated (Fig. 5). ~

second step

Fig.5. Three phase model of solution in the two step calculation

first step

s coefficient is considered as temperature dependent.
d it can be given by measuring the volume fraction @
ulated behaviour for a compos#

In this two step analysis, the Poisson'
value of ¢y, is an important parameter an
glass beads in these highly reinforced composite. The final calc
based on 30% vol. of glass with ¢y, equal to 51% is given in Fig. 6.

1E+10

Fig. 6. Calculated results(2-steps,
O =51%) given by modified H
ﬁ model for a composite based on

‘ . ‘ vol. of untreated glass beads.

300 330 360 390 420 450 480

G'(Pa)

o Experimental

—— 2 step model

Temperature(K)
firmed for the composite with a higher volume fraction of glass.

This hypothesis are con
lculated fittings of the dynamic mechanical properties

vol.). Table 2 shows the best ca
composite material based on different glass bead contents.

Table 2: Calculated optimized characteristics, for composites based on the various volume
fraction of untreated glass beads
: E

446 1.08 2988 14.3
447 1.006 3701 20.12
448 | 0989 | 4452 39.2
448 | 0985 | 6614 64.2

Hervé -Zaoui's models in comparison

Fig. 7 shows the calculated results using Kerner's and
the Kerner's model has a very bad fit.

experimental data. One notice that in the rubbery state,

| and theoretical dynamic mechanical behaviours

tes. In the second type of the composites, micro
lomeration of the fillers and the homogeneity of

3.4, Comparison between experimenta
aminosilane-treated glass bead composi
observation shows, there is not the high agg

composites are better.
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this case the calculated volume fraction of highly reinforced zone, ¢y,,, equal to 37% instead
'51% in the untreated filler composite (30%). In the other hand we can consider that the glass
articles are better dispersed. So for predicting the dynamic behaviour of these composites, we
an use the same model with only one step of calculation (Fig. 8).

e O Qe

<

— Kerner's Model

o Experimental : o experimental Model
— Hervé's Modszl

1EH07 ; , ,
300 330 360 390 420 450 480 100 200 300 400 500

Temperature(K) . Temperature(K)
Fig. 8. Comparison of the calculated

results (1 step, v variable, ) and
experimental results for the composite
based on 30% vol. treated glass beads.

Fig. 7. Comparison of the calculated
results (2 step, v variable, ¢,,=51%) by
Hervé and Kerner's medel

5. Comparison between experimental and theoretical dynamic mechanical behaviours for the
astomer coated glass bead composites. In the case of the composites with interlyer (e/r=1.5%,
- thickens of the interphase and r: the radiate of the filler), the distribution of glass particles
rved by microscopy), is homogenate. The same model with 4 phases (1. filler, 2. interlyer,
matrix, 4. equivalent homogeneous media), in one step is used (Fig. 9), but the calculated
mrve in not fitted by the experimental once (Fig. 10 (a)). The reason of this difference should be
Be change of the interlyer's properties.
deed the T, of the elastomeric material in
mmparison with the matrix (Epoxy) is very
wer (T,=240K), but in the composite's
gerlyer (interphase), the molecular mobility
lnce and it has not the same behaviour. So we
supposed that the storage modulus (G') of
interlyer (interphase) is between the G' of
elastomer material and G' of the matrix
Epoxy). So with this hypothesis, the calculated Fig. 9. Four phases model of solution for
sults show a best fitting with the experimental the composite with interlyer
sa (Fig. 10 (b)).

1,00E+10 1,00E+10

1,00E+09

00E+08 1,00E+08 -

1,00E+07 + + + t ;
100 200 300 400 500 600

L00E+07 +— - t + ; -
100 200 300 400 500 600
Temperature(K|

‘Fig. 10. The compaR88i*Sttthe calculated (4 phases model) and expenmenta)l results for
_composite 30% with non (a) non modified interphase and, (b) modified interphase properties.
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4. CONCLUSION

In this work we have shown that in the case of low volume fraction of the filler, the self=
consistent models develpped by Christensen-Lo and Hervé- Zaoui, predict a better fitting for
dynamic behaviour of the particulate composite than Kerner's one. But in the higher volume
fraction of glass beads (¢s>20%), these models can not well predict the dynamic properties in the
glass transition region especially in the rubbery state. So the model of Hervé and Zaoui, i
modified by including the real morphology of the composite and, the variation of the Poisson
ratio. In the case of the composites with interlyer (interphase), a 4 phases model in one steg
describe correctly the properties of the composite, but it must be considered that the properties of
the interphase i.e. G', change between the matrix and interlyer's values.
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APPENDIX

The final solution from Herve and Zaoui for G* of the particulate composite is given by the results of the g
equation (A-1):

* *

G G
A(—L)? +B(—%)+C=0 (A-1
G G

where,A,B, and-C are constants. For three phase model, the following simplified expressions are:

A=4RD (1-2vy, )(7-10vy JHpp +20R] (7-12vp, +8v2 JHyp +12R3 (1-2vpy )
" x(Hyq - THg3)+ 20R3 (1-2vyy )2 Hys +16(4 = 5vpn )(1-2viy ) Hag (A2
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5 B=3R (1-2vpy )(15viy = 7)Hyp +60R] (viy =3)vipHay ~24R3(1-2vp)

x(Hig - THp3) —40R3 (1-2vpy )> Hyz = 8(1 - Svyy )(1-2vim ) Hag

C=-RY(1-2vy )(7+5vy JHyy +10R] (7-v2 JHgy +12R3 (1-2vy,)
x(H14 - THp3)+20R3 (1-2vp)? Hy3 = 8(7 - 5v )(1 - 2vim)Ha3

{column) of the matrice P:

Hip=P1-Pr2-Py1P12
Hy3=P; P32 -P31-P
Hig =Py 1-Pap-Ps1P12
Hp3 =Py 1-P33-P31°Py 2
Hyp =P4 1 Pr2-P21-Ps
Hy3="P41 P32 -P31-Pap

" with matrix of P:

(A-3)

(A-4)

which, R;=1 and H,; are the products of the members of the following matrice P, thus n(f) are the number of line

*

G
a=| —& | (7+5vg) (7=10v) = (7=10vg) (7T +5vmm)
G

m
/ *
Gf
b=4(7-10v¢)+| —— | (T+5vf)
\Gm
{

Gy
c=(7T-5vm)+2| — (4=5vp)
G

m
S
Gf
d=(7+5vp)+4| — |- (7-10vp)
\Gm
Gy
e=2(4-5vg)+| —— |- (7T-5vf)
G
. m
*
Gf
f=(4-5ve) (7T-5vpm)—| — (4=5vm)-(T-5v¢)
Gm
G*
f |.;
= g;' =P
v

, [ 5 R?(3b-7c) 120 4(f-2700)
:f 3 5(1-2vy) Rf 15(1—2vf)Rf
. " (,~2Vm)b -20(1-2vp)a -12a(1—2v,§)
' 7(1-2v¢) Ty 7(1-2v¢)R]
R -R] (22 +147a) d R2[105(1 - vyy) +12a(7 - 10vy,) = Te]
R T70(0-2vp) 7 35(1-2v¢)
; 5
7(1-2vp )oR e(1-2vy)
—2(1—2vm)aR? S i L 0 e(1-2vy)
|6 2(1-2v¢) 3(1—2vp)
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